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Abstract—A prototype W-band all-weather automotive radar
based on a single-chip 0.1-um AlGaAs/InGaAs/GaAs HEMT
transceiver has been developed. This radar has the features of
simple architecture and small size, with adequate performance.
Owing to the maturity of HEMT MMIC technology, this radar is
potentially low cost to implement in personal vehicles. The pro-
totype radar used for autonomous intelligent cruise control in a
passenger car is presented in this paper. The MMIC development,
together with the radar system design, is also addressed.

I. INTRODUCTION

VER the past few years, automotive sensors/radars have
Obecome an important and interesting area for microwave
and millimeter-wave (MMW) applications. They not only have
the huge market potential of the automotive industry but
also will play an important safety role in future intelligent
vehicle highway systems (IVHS). The forward collision warn-
ing (FCW) and autonomous intelligent cruise control (AICC)
radars are forward looking automotive radars (FLAR’s) that
require a sensor range of about 100 m. The FCW radar
will detect potential forward collision situations and provide
a warning to the driver, while the AICC will operate in
an autonomous control loop to maintain a continuous safe
following distance.

Many different sensor/radar technologies for automotive
applications have been reported [1]-[5]. The three most com-
monly used technologies are MMW, microwave, and laser-
based sensor systems. While all these systems have adequate
range and range resolution, the laser-based system has the
disadvantage of limited field of view and poor close-range
resolution as well as possible eye safety concerns. Most of
all, its performance is affected by weather conditions. The
disadvantages of microwave radar are congested frequency
bands and large antenna size. Basically, there are two dominant
factors, in addition to the performance requirement for all-
weather conditions, that drive the technology for automotive
radars: cost and hardware size. Low cost is the key factor
for consumers to accept the radar as a safety and affordable
component of their vehicles. The size constraint is essential
for easy integration of the radar on the vehicle without major
impact on the vehicle design and performance. These problems
can be overcome by MMW radars.
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The reported MMW radars use either hybrid or multi-
ple monolithic microwave and millimeter-wave integrated
circuit (MMIC) chip approaches [4]-[5]. Compared with hy-
brid circuits, MMIC’s are more attractive for automotive
radar applications because of their higher reliability, greater
compactness, and lower fabrication and integration costs for
mass production. Among MMW radar technologies, the W-
band radar has a clear technical merit over other frequency
bands since it has a larger RF bandwidth and better range
resolution, and smaller hardware size. Owing to the recent
advanced 0.1-um pseudomorphic (PM) high electron mobility
transistor (HEMT) MMIC technology [6], the key W-band
monolithic circuit elements have been successfully developed
over the past few years [7]-[10]. These components have
been further integrated into a W-band single-chip transceiver
used as the front-end of a FMCW radar [11]. Moreover, this
0.1-pm PM HEMT process development has been transferred
to production [12] and high fabrication yield of high-level W-
band MMIC’s have been demonstrated [13]-[16]. This ensures
that the MMIC’s can supply future automotive electronics in
volume.

This paper reports a FLAR prototype developed for AICC
applications. The proof-of-concept unit consists of two an-
tennas, one RF front-end which uses a W-band transceiver
MMIC, one IF receiver, and one digital signal processor
(DSP). The prototype radar utilizes a frequency modulation
continuous wave (FMCW) and homodyne radar scheme be-
cause of its simple architectures, and thus it has the potential
for low cost mass production. On the other hand, other
radar architectures, e.g., the super-heterodyne scheme with a
low phase noise LO source [17], can provide better petfor-
mance. However, this approach requires separate HBT (hetero-
junction bipolar transistor) and HEMT MMIC chips for the W-
band RF transceiver unit under current technologies and thus
may cause higher cost. The homodyne FMCW radar prototype
unit has been extensively field tested and demonstrated all
core technologies required for MMW automotive radars. The
MMIC development is presented in section II. Section III
discusses the design approach of this prototype. The radar
test results are described in Section IV followed by a brief
summary.

II. MMIC DEVELOPMENT

The HEMT has demonstrated high gain, low noise, ad-
equate power transmitting capability in MMW frequency
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Fig. 1. (a) The block diagram and (b) the photograph of the W-band single-chip transceiver chip.

components. The recent advancement of HEMT technology
makes it possible to achieve a high level of integration
for MMW monolithic IC’s, allowing the single-chip W-band
transceiver for FMCW, homodyne radar applications to be
developed using 0.1-pm T-gate AlGaAs/InGaAs/GaAs PM
HEMT technology [6].

The block diagram of the single-chip FMCW transceiver
is shown in Fig. 1(a). The transmit and receive channels use
separate antennas for better isolation. An FMCW signal is
generated from the VCO and fed to the transmit amplifiers. A
portion of the transmit power is coupled back to the receiving
channel and used as an LO source for the mixer.

The VCO is a common gate design which uses gate bias
voltage to adjust the oscillation frequency, and the output
power is coupled out of the drain terminal through the mi-
crostrip edge-coupled lines. The transmit amplifier consists
of two identical two-stage amplifiers which are capable of
delivering more than 10 mW of output power at 90-94 GHz.
To ensure circuit stability at the out-of-band frequencies, a
lossy series resonator was used at the gate of each HEMT
device. The dc biases can be provided on both sides of the
circuit for ease of system integration.

The receiver has a three-stage LNA at the front and is
followed by a single-balanced diode mixer. The LNA is
designed for low noise figure based on the reactive matching
technique while the mixer is designed using a 180° rat-race
hybrid and a pair of 16-um diodes. In addition, the three gate
bias lines for the LNA are connected together to simplify

Fig. 2. The photograph of the single-chip transceiver housing.

the test fixture design. The diodes are fabricated using the
gate-to-channel junction of a HEMT device and thus are fully
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TABLE 1
MINI-SPECIFICATIONS OF THE FLAR PROTOTYPE

)
Fig. 3. The (a) function block diagram and (b) photograph of the FLAR unit.

Parameters Requirements
Range 2-100 meters

Range Resolution 0.5 meters

Range Rate Resolution 1.5 km/hr

Antenna Beamwidth 3 by 3 degrees, Linear
Antenna Sidelobes < -30 dB

Modulation Type FMCW

Modulation Bandwidth 350 MHz

Transmit Power > 10 mW

S/N Ratio 10 dB

Display Laptop Computer via RS232
DC Power Supply 12 volts

compatible with the fabrication process of the active devices.
Fig. 1(b) is a photo of the transceiver chip. The chip size is
6.9 x 3.9 mm?.

Fig. 2 shows the transceiver MMIC and voltage-regulated
dc power supply all packaged in a housing. The top portion
includes the MMIC and two finline transitions for interface of
waveguide and transceiver chip. Two SMA connectors are for
IF signal output and VCO tuning voltage input, respectively.
Eight voltage regulators are assembled in the bottom housing.
The complete unit requires a +5 V power supply with less
than 250 mA total current.

III. RADAR SYSTEM DESIGN

Fig. 3(a) shows the block diagram of the prototype radar.
While the requirements for RF front-end and IF receiver may
be generic for different types of radars, the antenna and DSP
requirements are different for different applications. Table I
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Fig. 4. (a) The parabolic dish reflector geometry, (b) measured and calculated radiation patterns of the parabolic dish reflector, and (c) measured radiation
patterns of the lens antenna.

presents the mini-specifications for the FLAR. The photograph antenna as shown in Fig. 4(a). A 3-in. offset reflector with a
of this prototype radar unit is shown in Fig. 3(b). 2-in. focal length is used for its high efficiency and blockage-
A. Antenna free configuration. A rectangular feed horn illuminates the

Two different types of antennas have been utilized to evalu-  reflector with —12 dB edge taper to achieve better than
ate the prototype unit. The first one is a 3°-beam parabolic dish —25 dB sidelobe level. The reflector was built by metalizing
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Fig. 5. (a) Circuit schematic diagram and (b) desired (ideal curve) and actual (simulated performance) curves for output voltage, of the linearizer.

the surface of a parabolic dish of 60-mil fiber glass using the
vacuum deposit aluminum (VDA) process. The feed horn was
electroformed. Fig. 4(b) shows the measured as well as the
computed radiation patterns at 93 GHz. The antenna achieved
36.1 dBi gain, as compared to the predicted gain of 36.2 dBi.
Another one is an off-the-shelf optical lens antenna as shown
in Fig. 3(b). Fig. 4(c) shows that it has 35.4 dB gain and
greater than 25 dB sidelobe rejection. In addition, it is easier
to implement in the system and therefore was selected for the
prototype.

B. Linearizer, IF AGC, and DC Power Supply

In order to achieve the 0.5-m range resolution, the VCO
requires a tuning range of more than 350 MHz; therefore, a
linearizer is designed to compensate the VCO tuning curves.
The linearizer circuit produces the voltage sweep waveform
used to drive the VCO. The voltage sweep waveform is
predistorted to produce a linear frequency ramp function at
the VCO output. Fig. 5(a) shows the schematic diagram of
the linearizer.

The input drive waveform is a voltage step with duration
slightly longer than the desired output sweep and a low duty
cycle. The first operational amplifier (op-amp) stage provides
a high impedance load to the DSP board and a low impedance
output to the linearizer. The linearizer is a modified integrator
circuit. R1, C1 and the op-amp form an integrator which will
produce a linear ramp of voltage versus time when Vin is
nonzero. R2 was added to discharge C1 between sweeps; this
is practical because of the low duty cycle. The input arm
formed by R5, C3 and R6 provides a component of current
that will accelerate the voltage ramp over time, increasing
the ramp rate the most during the last half of the sweep.
The input arm formed by C2, R3 and R4 provides a current
component which is maximum at the beginning of the sweep
and reduces over time so it has the most effect over the first
half of the sweep. This approach provides freedom to set the
ramp rate at the beginning, middle and end of the sweep. Both
the amplitude and time constant of the current components
were set to produce the desired waveform. Fig. 5(b) illustrates
the desired (ideal curve) and actual (simulated performance)
curves for the linearizer output voltage.
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Device

Fig. 6. (a) Functional block diagram and (b) photograph of the DSP board.

The IF receiver consists of two single-stage MMIC am-
plifiers and an analog variable attenuator. All of them are
off-the-shelf components. Each amplifier has 24 dB gain and
the attenuation ranges from 0-70 dB. The power supply board
converts the +12 V battery voltage into +5 and +10 V
for RF front-end, IF receiver, and DSP board. Total power
consumption is less than 2 W.

C. Digital Signal Processor

The digital signal processor converts the IF output to usable
range and velocity values that can be fed to a cruise control or
driver display. Depending on the application, the requirements

on the signal processing can be quite severe, yet it must
be accomplished at very low cost to be accepted by the
automotive consumer.

Since FLAR is looking out along the road surface, there
will be many cars in the field of view at close ranges. Also,
large amounts of clutter will be observed in the form of
road signs, guard rails, overpasses, cars parked along side
the roadway, etc. These factors require sophisticated signal
processing to ignore clutter and maintain track on the target
of interest.

An intelligent cruise control requires high precision on the
range and velocity measurements because they are part of
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Fig. 7. Photograph showing that the prototype FLAR was mounted on a platform in front of the grill of the vehicle.

a closed-loop system servoing around zero relative velocity.
A collision warning radar does not require high precision,
but requires the capability to track high closing velocities
and acquire new targets rapidly. It also requires a detection
probability as close to one as possible and a false alarm
probability as close to zero as possible.

Our application was for AICC. To meet the signal process-
ing requirements within the cost constraints of the commercial
automotive market, we chose to perform the signal process-
ing digitally with a commercial programmable digital signal
processor. Utilizing DSP rather than analog signal processing
allows some very sophisticated algorithms to be used in a
low cost system. In addition, the algorithms can be easily
reprogrammed and are immune to factors such as temperature
and aging.

The IF signal is digitized with an 8-bit analog to digital
converter (ADC). An IF AGC is required before the ADC
because the dynamic range of the radar signal is much greater
than 8 bits. Once the signal is in digital form, some very
sophisticated signal processing can be performed. Because this
is an FMCW radar, the first step is to estimate the frequency
spectrum of the IF output. This is done by windowing the
time samples and then performing an FFT. The output of the
FFT is the amplitude of the signal versus frequency. This is
equivalent to amplitude versus range. Several of these range
profiles can be integrated together to increase the signal-to-
noise ratio against random noise. The next step is to distinguish
targets from noise. This is determined using an adaptive
thresholding algorithm known as constant false alarm rate
(CFAR). The CFAR algorithm determines a threshold for
each range cell that is based on the surrounding noise floor.
If the amplitude of that range cell is above the threshold,
then it is assumed to be a target. Because the total range
of an automotive radar is small compared to the size of the
targets, the target will cover several range cells. All adjacent
cells with targets in them are assumed to represent one target
and the centroid is computed to determine the range for that
target.

The signal processing after this point is divided into two
main functions: acquisition and tracking. Acquisition is de-
ciding what is a valid target and deciding whether to begin
tracking it. Tracking is following the target in the range space
and reporting its range and velocity to the accuracy required
by the application. Fig. 6(a) and (b) shows the functional block
diagram and photograph of the DSP board, respectively.

IV. RADAR TEST RESULT

As shown in Fig. 7, the prototype FLAR was mounted on
a platform in front of the grill of the vehicle. The platform
can be slightly adjusted to align the antenna beam in a proper
direction. Fig. 8(a) is the test result on a highway. It shows that
the radar acquired a target at 35-m range and the range varied
as the driver changed the vehicle speed to vary the distance
between the target and driver. The radar tracked the target
up to more than 100 m although the target range resolution
decreased at longer distance, indicating that the VCO linearity
needs to be further improved for better results. Fig. 8(b) and
(c) illustrates the real time display showing the target range and
velocity. It also features an audio signal to warn the driver of a
potential obstacle. In a closed-loop test with the cruise control,
this prototype FLAR automatically adjusted the vehicle speed
to maintain a constant safe following distance from the lead
vehicle.

V. SUMMARY

We have presented a prototype W-band all-weather
automotive radar based on a single-chip 0.1-pm
AlGaAs/InGaAs/GaAs HEMT transceiver. The prototype
radar used for autonomous intelligent cruise control in a
passenger car is demonstrated. The computed range and
velocity agree well with measurement data. The maturity
of HEMT MMIC technology, as well as a simple radar
architecture, enables the low cost and small size of the MMW
component for this radar.
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Fig. 8. Road test results of the FLAR. (a) Playback data of the test result on a highway. Real time (b) range, and (c) speed, display on a personal compuer.
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